
Quiz	2	Review
6.823	Spring	2016

Suvinay Subramanian

3/31/16 6.823	Spring	2016 1

Topics	Snapshot

»Out-of-order	execution
- Reorder	buffer	(ROB)
- Register	renaming
- Branch	prediction
- Store,	load	buffer

»Multi-threading
- Coarse-grained,	fine-grained,	SMT

» Reliability
- ACE,	AVF

3/31/16 6.823	Spring	2016 2

Out-of-order	Execution

» Instruction-level	parallelism	(ILP)
- Execute	as	many	instructions	as	possible	concurrently
- Dynamic	scheduling	of	instructions
- Maximize	throughput,	hide	latency	(ALU/Memory)

»Why	is	this	not	easy?
- Dependencies	between	instructions

3/31/16 6.823	Spring	2016 3

Flavors	of	Dependencies

»Data	dependency
- RAW,	WAR,	WAW

» Control	dependency
- Branches

» Structural	dependency
- Only	one	ALU

3/31/16 6.823	Spring	2016 4

Recipes

1. Stall
2. Bypass	
3. Speculate

4. Add	hardware
5. Indirection	(for	false	dependencies)
6. Do	something	else

Modern	processors	do	this	a	lot!

3/31/16 6.823	Spring	2016 5

Resolving	Dependencies

»Data	dependency
- RAW,	WAR,	WAW
=>	Scoreboard	(L8),	Register	renaming	(L9),	ROB	(L11),	
Store	buffer	(L12)

» Control	dependency
- Branches
=>	Branch	prediction	(L10)

» Structural	dependency
- Only	one	ALU
=>	Superscalar	execution	(L8,	L11)

3/31/16 6.823	Spring	2016 6

Reorder	Buffer

»Hardware	structure	that:
- tracks	dependencies	between	instructions
- causes	correct	sequencing	of	dependent	instructions
Enables	independent	sequences	of	instructions	to	proceed	
concurrently	

Reorder	Buffer
Use Ex Op p1 PR1 p2 PR2 Rd PRd

Source Destination

Instruction

7

Register	Renaming

Output-dependence
r3 <− (r1) op (r2) Write-after-Write
r3 <− (r6) op (r7) (WAW) hazard

Anti-dependence
r3 <− (r1) op (r2) Write-after-Read
r1 <− (r4) op (r5) (WAR) hazard

Eliminates	false	dependencies	
by	allocating	a	new	register	on	
each	write

3/31/16 6.823	Spring	2016 8

Register	Renaming

Eliminates	false	dependencies	
by	allocating	a	new	register	on	
each	write

Rename	Table
Register Tag

R1 P6

R2 P2

R3 P3

R4 P5

R5

Physical	Registers
Reg Value Valid

P1

P2 8000 1

P3 100 1

P4

P5 18 1

P6

P7

P8Free	List P8 P12

3/31/16 6.823	Spring	2016 9

Store,	Load	Buffer

»Handle	dependencies	that	arise	through	memory

» Allow	aggressive	load	scheduling;	stores	don’t	
constrain	load	scheduling

st r1,	4(r2)
ld r3,	8(r4)

When	is	the	load	dependent	on	the	
store?

When	(r2	+	4)	==	(r4	+	8)

Do	we	know	this	issue	when	the	
instruction	is		decoded?		No

3/31/16 6.823	Spring	2016 10

Store	Buffer

» On	store	execute:
- mark	valid	and	speculative;	save	tag,	data	and	

instruction	number.

» On	store	commit:	
- clear	speculative	bit	and	eventually	move	data	to	

cache

» On	store	abort:
- clear	valid	bit

Data

Store	Address

Tags

Store	Commit	Path

L1	Data	Cache

Load	Data

Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data
Inum TagSV Data

» One	entry	per	store
»Written	by	stores
» Searched	by	loads
»Writes	to	data	cache

» Enables	data	forwarding
» Handles	OoO stores
» Handles	speculative	stores

6.823	Spring	2016 11

Load	Buffer
» On	load	execute:

- mark	entry	valid,	and	
instruction	number	and	tag	
of	data.

» On	load	commit:	
- clear	valid	bit

» On	load	abort:
- clear	valid	bit

Load	AddressSpeculative	
Load	Buffer

InumV
InumV
InumV
InumV
InumV Tag

Tag
Tag
Tag
Tag

» One	entry	per	load
»Written	by	loads
» Searched	by	stores

» Enables	aggressive	load	scheduling
» Detects	ordering	violations

3/31/16 6.823	Spring	2016 12

Branch	Prediction

Speculation	on	control	flow	dependencies

» 1-bit	predictor,	2-bit	predictor
»Global	history,	local	history
» 2-level	predictor

Index

Concat

History

+/-

Prediction

Taken

f

PC

3/31/16 13

Branch	Prediction

Branch	Target	Buffer	(BTB)
» store	target	PC	of	branch/jmp instruction	seen	last	time
» get	address	earlier	than	predictor/decode	stage	in	
pipeline

14

Speculative	Value	Management

»When	do	we	do	speculation?
- Branch	prediction
- Assume	no	exceptions/interrupts
- Assume	no	memory	dependency
- …

»How	do	we	manage	speculative	values?
- Greedy	(or	eager)	update
- Update	value	in	place
- Maintain	log	of	old	values	to	use	for	recovery

- Lazy	update
- Buffer	the	new	value	and	leave	old	value	in	place
- Replace	the	old	value	on	commit

3/31/16 6.823	Spring	2016 15

Types	of	Speculative	Values

» Branch	Prediction
- history	registers,	prediction	counters	etc.

» Register	values

»Memory	values

3/31/16 6.823	Spring	2016 16

Out-of-order	Execution

»Dynamic	scheduling	of	instructions
- Dynamically	builds	a	restricted	data-flow	graph	of	
program

» Allows	us	to	tolerate	long-latency	operations	
(memory,	ALU)
- Execute	”around”	long-latency	operations

» Adds	design	complexity,	area,	power

3/31/16 6.823	Spring	2016 17

Topics	Snapshot

»Out-of-order	execution
- Reorder	buffer	(ROB)
- Register	renaming
- Branch	prediction
- Store,	load	buffer

»Multi-threading
- Coarse-grained,	fine-grained,	SMT

» Reliability
- ACE,	AVF

3/31/16 6.823	Spring	2016 18

Multithreading

» Take	instructions	from	different	programs	(or		
threads)	– guaranteed	to	be	independent.

» Coarse-grained	multithreading
Fine-grained	multithreading
Simultaneous	multithreading	(SMT)

3/31/16 6.823	Spring	2016 19

Reliability

»What	happens	if	a	bit	flips?
- Silent	Data	Corruption	(SDC)
- Detected	Unrecoverable	Error	(DUE)

»What	structures	are	vulnerable?
- Architectural	Vulnerability	Factor	(AVF)

3/31/16 6.823	Spring	2016 20

ACE	Lifetime	Analysis

»Divide	up	the	lifetime	of	a	bit	during	a	program	
execution	into	ACE	and	un-ACE	intervals.

» Start	with	conservative	assumption:	Entire	period	
is	ACE.	Systematically	reason	about	which	intervals	
are	un-ACE.

» AVF	is	the	fraction	of	lifetime	a	bit	is	ACE.
Typically	report	per-structure	AVF.

3/31/16 6.823	Spring	2016 21

Good	luck!

3/31/16 6.823	Spring	2016 22

